Telecommunications and Connectivity in Remote Areas
Executive Summary
Telecommunications in remote areas face unique challenges, from lack of terrestrial infrastructure to geographical limitations. This article analyzes cellular (4G-LTE, 5G) and satellite (DVB-RCT2, LEO/GEO networks) technologies, protocols such as LoRaWAN and MQTT, and trends such as intelligent hyperconnectivity. A use case is proposed in Mexico that integrates IIoT and hybrid networks to optimize resource management in mining and agricultural sectors, based on pilot projects of the Federal Telecommunications Institute (IFT) and experiences of companies such as WiBo (Radicelli-García, Pomboza-Floril, & Cepeda-Astudillo, 2018), (Marketing Team, 2023), (Zurita-González & Koike-Quintanar, 2023).
introduction
In Latin America, 67% of urban households have internet access, while in rural areas only 23% have connectivity (Ziegler, Arias-Segura, Bosio, & Camacho, 2020). This gap limits socio-economic development and the adoption of technologies such as the Industrial Internet of Things (IIoT), which are key to automation and sustainability. Telecommunications in remote areas require adaptive solutions that combine scalability, low cost and environmental resilience. This article explores how emerging technologies and innovative protocols are transforming connectivity in Mexico, with an emphasis on practical applications for industry and marginalized communities (Zurita-González & Koike-Quintanar, 2023), (Radicelli-García, Pomboza-Floril, & Cepeda-Astudillo, 2018).
Conceptual Definitions
Telecommunications and Connectivity
Telecommunications encompass the transmission of information at a distance using wired (optical fiber) or wireless (radio frequency, satellites) technologies. Connectivity refers to the ability of devices and users to access communication networks, essential for basic services such as online education, telemedicine and infrastructure monitoring (UIT, 1998), (INMOSAT, 2024).
Cellular Technologies vs. Satelitales
- Cellular (4G-LTE/5G): They offer high speed (up to 20 Gbps in 5G) and low latency (<1 ms), but they rely on terrestrial towers. In rural areas, deployment is costly due to low population density (Radicelli-García, Pomboza-Floril, & Cepeda-Astudillo, 2018), (Avalos-Barrera, 2024).
- Satellites: They use satellites in low orbit (LEO, such as Iridium) or geostationary (GEO, such as Inmarsat). They provide global coverage, ideal for emergencies and areas without infrastructure, although with moderate speeds (2.4-9.6 kbps) (Marketing Team, 2023), (Verasat, 2023).
Industrial Internet of Things (IIoT)
The IIoT integrates sensors, machines and systems into industrial networks to optimize processes through real-time data analysis. Unlike consumer IoT (usually household and wearable devices), IIoT prioritizes reliability and security in devices installed in critical environments such as oil and gas, mining and agriculture (Paessler, 2025), (SAP, 2025).
%2020.45.55.png)
Technological Foundations
LPWAN and LoRaWAN networks
Low-power wide area networks (Low Power Wide Access Network, LPWAN) allow long-range communications (up to 15 km) with low-power devices. LoRaWAN (Low-Range Wide Access Network), an open standard, operates in ISM bands (868 MHz in Europe, 915 MHz in America) and uses CSS modulation to minimize interference. It is ideal for IIoT in agriculture, where sensors monitor soil moisture and climate or in critical sectors such as oil and gas (Calero-Herruzo, 2025), (Blanco-Rico, 2021).
Advanced Satellite Transmission
Technologies such as DVB-RCT2 (Digital Video Broadcasting - Return Channel Terrestrial 2) take advantage of digital television infrastructure to provide internet in rural areas, with speeds comparable to 4G but lower implementation costs (Radicelli-García, Pomboza-Floril, & Cepeda-Astudillo, 2018). New generation satellites, such as those from SpaceX (Starlink), promise reduced latencies (<50 ms) using LEO constellations (Marketing Team, 2023), (INMOSAT, 2024).
Modern Protocols
MQTT (Message Queuing Telemetry Transport)
Lightweight protocol based on the publisher-subscriber model, optimized for IIoT in networks with limited bandwidth. In scenarios such as telemetry in mining, MQTT transmits sensor data to cloud servers with 70% less overhead compared to HTTP (Cortes-Núñez, 2021), (Blanco-Rico, 2021), (AWS, 2024).
5G and Hyperconnectivity
5G not only improves speeds (up to 100 times more than 4G), but it also enables mass machine connectivity (mMTC), supporting up to 1 million devices per km². This is crucial for smart cities (Smart Cities) and industrial automation, where simultaneous communications are required between autonomous vehicles, robots and control systems (Avalos-Barrera, 2024), (APD Writing, 2021), (SAP, 2025).
Trends: Towards Intelligent Hyperconnectivity
The convergence of 5G, AI and edge computing is driving autonomous networks capable of self-optimization.
Table 1. Applications of intelligent hyperconnectivity. Own elaboration with information from the references mentioned in the table.
CASE 1
Application
Autonomous Mining with 5G and IIoT Networks.
Problematic
35% of fatal accidents in Mexican mining occur in high-risk areas (deep tunnels, areas with toxic gases) (Juárez, 2021).
Applicable Technology
- Private 5G networks: Latency <10 ms for remote control of heavy machinery (such as 400-ton trucks) using joystick (Juarez, 2021).
- Drones with LiDAR sensors: Real-time 3D mine mapping to detect geological instabilities (Juárez, 2021).
- Blockchain: Immutable record of environmental data (CO₂ emissions, water consumption) to comply with sustainability regulations (ICEX, 2022).
Implementation
In Peñasquito Mining Unit (Zacatecas), IIoT sensors were deployed in drills to measure vibrations and temperature, transmitting data via MQTT to control centers (Sothis, 2025).
Results
40% reduction in human exposure to hazardous areas and 25% increase in extraction efficiency (Juárez, 2021).
CASE 2
Application
Community Tourism with Hybrid Networks in Indigenous Areas.
Problematic
68% of indigenous communities with tourism potential lack connectivity to promote their services (SICT, 2022).
Applicable Technology
- Wi-Fi 6 Mesh Networks: Cascading coverage for towns with less than 500 inhabitants, using nodes in schools and health centers (SICT, 2022).
- Decentralized booking platforms: Blockchain integration for smart contracts between tourists and local artisans.
- LoRaWAN sensors: Capacity monitoring in archaeological sites (such as Palenque) to control capacity without the need for cellular infrastructure (Sothis, 2025).
Implementation
On the Mayan Route (Chiapas), the program Smart Villages installed digital kiosks with Starlink satellite access to book tours, show translations in native languages and sell handicrafts via NFC (SICT, 2022).
Results
150% increase in visits to Tzotzil communities and generation of 320 local jobs in 2024 (SICT, 2022).
CASE 3
Application
Port Logistics with Digital Twins.
Problematic
containers in Mexican ports suffer delays due to lack of coordination between customs and carriers (Locke, 2022).
Applicable Technology
- Digital twins: Virtual replicas of the Port of Veracruz that simulate merchandise flows using data from IoT sensors in cranes and trucks (Locke, 2022).
- Predictive analytics: Algorithms that anticipate bottlenecks with 92% accuracy, using weather and maritime traffic records (Locke, 2022).
Implementation
Integration of high-precision GPS in land fleets and RFID beacons in containers, with updates every 15 seconds via 5G (Locke, 2022).
Results
20% reduction in customs clearance times and savings of 18 million dollars annually in fuel (Locke, 2022).
CASE 4
Application
Precision Agriculture.
Problematic
In the Bajío region (Guanajuato, Jalisco, Michoacán), 45% of farmers face yield losses of 20-30% due to (Vilaboa-Arroniz, Precision Agriculture, the New Sustainable Alternative (opinion), 2018 (opinion)):
- Climate variability: recurrent droughts and unpredictable floods.
- Inefficient water use: gravity irrigation systems with losses of 60%.
- Fertilizer overapplication: up to 35% more than required, polluting aquifers.
Applicable Technology
- Multispectral drones
- Equipped with NIR (near-infrared) cameras to detect water stress and pests before visible symptoms (Vilaboa-Arroniz, Precision Agriculture, the New Sustainable Alternative (opinion), 2018 (opinion)), (Vilaboa-Arroniz, 2018).
- 3D terrain mapping with a resolution of 2 cm/pixel, identifying areas of low productivity (Admin, 2024), (SGS, 2023).
- IoT sensors on the ground
- Real-time measurement of humidity (0-100 kPa), temperature and electrical conductivity.
- Data transmission via LoRaWAN to platforms such as Farmonaut, with automatic alerts for irrigation (Farmonaut, 2025), (Oropeza-Tosca, Barras-Baptista, Castillo-Romero, Guerra-Que, & De León-De los Santos, 2023).
- Smart drip irrigation
- Netafim™ systems with AI-controlled valves: adjust flow according to sensor data and weather forecasts (González, 2025).
- Savings of 40 to 60% in water consumption compared to traditional methods (Santillan & Rentería-Rodríguez, 2018), (González, 2025).
- Variable fertilization
- GPS-guided tractors that apply specific doses (0.5-4 kg/ha) in areas mapped by drones (Vilaboa-Arroniz, 2018 (opinion)), (Admin, 2024).
Implementation
Phase 1: Diagnosis (0-3 months)
- Initial mapping: drones fly over 500 ha in León (Guanajuato), identifying areas with pH <5.5 and soil compaction (Vilaboa-Arroniz, 2018 (opinion)), (SGS, 2023).
- Infrastructure installation: 120 IoT sensors and 3 LoRaWAN gateways for total coverage (Oropeza-Tosca, Barras-Baptista, Castillo-Romero, Guerra-Que, & De León-De los Santos, 2023).
Phase 2: Piloting (4-9 months)
- Integration with digital platforms:
- Farmonaut generates prescription maps for seeding and fertilization, synchronized with John Deere machinery (Farmonaut, 2025), (SGS, 2023).
- Mobile app for farmers with real-time alerts (e.g.: “Activate irrigation in sector B2 in 2 hours”) (Farmonaut, 2025), (González, 2025).
Phase 3: Escalation (10-12 months)
- Training: 150 farmers trained in data interpretation and equipment maintenance (Admin, 2024), (Oropeza-Tosca, Barras-Baptista, Castillo-Romero, Guerra-Que, & De León-De los Santos, 2023).
- Business model:
- Cooperatives purchase shared drones ($1,500 USD/month per 100 ha).
- Government subsidizes 30% of IoT sensors through the SADER program (Santillan & Rentería-Rodríguez, 2018), (Oropeza-Tosca, Barras-Baptista, Castillo-Romero, Guerra-Que, & De León-De los Santos, 2023)
Results
- Reduction of water consumption for irrigation of around 52% (González, 2025)
- Increase in corn crop yield of up to 23% (Admin, 2024), (Vilaboa-Arroniz, 2018 (opinion))
- Savings on investment in fertilizers of the order of 33% (Santillan & Rentería-Rodríguez, 2018), (SGS, 2023)
- 39% reduction in CO2 emissions per tonne/hectare (Oropeza-Tosca, Barras-Baptista, Castillo-Romero, Guerra-Que, & De León-De los Santos, 2023).
Conclusions
Connectivity in remote areas requires hybrid solutions that take advantage of the best of each technology: satellites for universal coverage, 5G for speed and LoRaWAN for low-cost IIoT. Mexico, with projects such as those of the IFT and alliances with manufacturers, is positioned to close the digital divide through investments in adaptive infrastructure and training in digital skills. The future points to autonomous networks powered by AI, where hyperconnectivity not only communicates people, but also optimizes entire ecosystems (Avalos-Barrera, 2024), (APD Writing, 2021), (SAP, 2025).
References
Admin. (02 de septiembre de 2024). Agricultura de Precisión: Revolucionando el Campo Mexicano. Obtenido de Tecnoagro: https://tecnoagro.com.mx/2024/09/02/agricultura-de-precision-revolucionando-el-campo-mexicano/
Avalos-Barrera, L. (12 de febrero de 2024). 5 tendencias en Telecomunicaciones y su regulación. Obtenido de NYCE México: https://www.nyce.org.mx/5-tendencias-en-telecomunicaciones-y-su-regulacion/
AWS. (2024). ¿Qué es IoT (Internet de las cosas)? Obtenido de Amazon Web Services: https://aws.amazon.com/es/what-is/iot/
Blanco-Rico, G. (02 de septiembre de 2021). Sistema de telemedida y sensorización mediante red LorRaWAN. Obtenido de Universidad de Valladolid: https://uvadoc.uva.es/bitstream/handle/10324/50031/TFG-G5211.pdf;jsessionid=BBCE03CED429E0CF9CF173C46490E9EA?sequence=1
Calero-Herruzo, M. (15 de enero de 2025). Red sensores multiservicio LPWAN. Obtenido de Universidad Oberta de Catalunya: https://openaccess.uoc.edu/bitstream/10609/147334/6/caleroherruzo20TFM0123memoria.pdf
Cortés-Núñez, R. (septiembre de 2021). Optimización de MQTT en redes LoRaWAN. Obtenido de Universidad de Granada: https://wpd.ugr.es/~jorgenavarro/thesis/2021_TFG_RicardoCortesNu%C3%B1ez.pdf
Equipo de Marketing. (22 de junio de 2023). Descubre la tecnología detrás de los celulares satelitales: Guía completa. Obtenido de WiBo: https://wibo.mx/descubre-la-tecnologia-detras-de-los-celulares-satelitales-guia-completa/
Farmonaut. (2025). Innovación Agrícola en México: Cómo la Tecnología Digital Está Transformando el Futuro de la Agricultura. Obtenido de Fatmonaut: https://farmonaut.com/south-america/innovacion-agricola-en-mexico-como-la-tecnologia-digital-esta-transformando-el-futuro-de-la-agricultura/
González, O. (2025). Agricultura de precisión: la era del éxito agroalimentario. Obtenido de Netafim: https://www.netafim.com.mx/blog/agricultura-de-precision-la-era-del-exito-agroalimentario/
ICEX. (septiembre de 2022). Industria 4.0 en México. Obtenido de España IExportación e Inversiones: https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2022/09/documentos-anexos/DOC2022913672.pdf
INMOSAT. (17 de septiemnre de 2024). Telecomunicaciones: Comunicación Satelital. Obtenido de INMOSAT: https://www.inmosat.com.mx/post/telecomunicaciones-comunicacion-satelital
Juárez, P. (15 de marzo de 2021). Minería conectada, una realidad de la red 5G: Ericsson. Obtenido de Milenio: https://www.milenio.com/negocios/mineria-conectada-realidad-red-5g-ericsson
Locke, J. (04 de marzo de 2022). IoT en Transporte: Soluciones y aplicaciones. Obtenido de DIGI: https://es.digi.com/blog/post/iot-solutions-for-transportation
Oropeza-Tosca, D., Barras-Baptista, A., Castillo-Romero, F., Guerra-Que, Z., & De León-De los Santos, B. (julio-diciembre de 2023). Análisis del Estado del Arte de la Agricultura de Precisión para su Aplicación en México. IPSIMTEC, 6(4), 1-8.
Paessler. (2025). IT Explained: IIoT. Obtenido de Paessler GmbH: https://www.paessler.com/es/it-explained/iiot
Radicelli-García, C., Pomboza-Floril, M., & Cepeda-Astudillo, l. (2018). Conectividad a Internet en zonas rurales mediante tecnologías de TDT (DVB-RCT2), o telefonía móvil (4G-LTE). DYNA, 85(204), 319-324. doi:https://doi.org/10.15446/dyna.v85n204.62690
Redacción APD. (14 de enero de 2021). ¿Por qué la conectividad inteligente será clave en la transformación digital de las empresas? Obtenido de APD: https://www.apd.es/conectividad-inteligente-clave-en-la-transformacion-digital/
Santillan, O. D., & Rentería-Rodríguez, M. D. (2018). La inversión en Agricultura de Precisión (AP) produce mayores ganancias comparada con la agricultura convencional al reducir los gastos de irrigación, control de plagas y fertilización. NOTA-INCyTU(015), 1-6. Obtenido de INCyTU: https://www.foroconsultivo.org.mx/INCyTU/index.php/notas/sociedad/94-15-agricultura-de-precision-n-2
SAP. (2025). ¿Qué es el Internet industrial de las cosas (IIoT)? Obtenido de SAP SE: https://www.sap.com/latinamerica/products/scm/industry-4-0/what-is-iiot.html
SGS. (16 de febrero de 2023). La agricultura de precisión: motor para aumentar la eficiencia y sustentabilidad del sector agroalimentario. Obtenido de SGS: https://www.sgs.com/es-mx/noticias/2023/02/agricultura-de-precision
SICT. (2022). Proyecto bandera de las telecomunicaciones en la SICT - Aldeas inteligentes. Obtenido de El Mirador - SICT: https://elmirador.sct.gob.mx/cuando-el-futuro-nos-alcanza/aldeas-inteligentes-proyecto-bandera-de-las-telecomunicaciones-en-la-sict
Sothis. (2025). Internet de las Cosas industrial: la hiperconectividad. Obtenido de Sothis: https://www.sothis.tech/internet-de-las-cosas-industrial-la-hiperconectividad/
UIT. (1998). Comunicaciones en las zonas rurales y remotas. Obtenido de Unión Internacional de Telecomunicaciones: https://www.itu.int/dms_pub/itu-d/opb/stg/D-STG-SG02.04-1998-OAS-PDF-S.pdf
Verasat. (2023). ¿Qué es un teléfono satelital? Obtenido de Verasat: https://www.verasatglobal.com/que-es-un-telefono-satelital/
Vilaboa-Arroniz, I. (23 de mayo de 2018 (opinión)). Agricultura de precisión, la nueva alternativa sustentable (opinión). Obtenido de Conecta - Tecnológico de Monterrey: https://conecta.tec.mx/es/noticias/veracruz/educacion/agricultura-de-precision-la-nueva-alternativa-sustentable-opinion
Vilaboa-Arroniz, I. (11 de julio de 2018). Agricultura de precisión como nueva alternativa sustentable. Obtenido de ITESM Posgrados y Educación Continua: https://blog.maestriasydiplomados.tec.mx/noticias/agricultura-de-de-precision-como-nueva-alternativa-sustentable
Ziegler, S., Arias-Segura, J., Bosio, M., & Camacho, K. (2020). Conectividad rural en América Latina y el Caribe. Obtenido de Instituto Interamericano de Cooperación para la Agricultura: https://test-assets-mujeresrurales.iica.int/storage/articles/August2021/E46q3RLM5Yg8QtgERROt.pdf
Zurita-González, J., & Koike-Quintanar, S. (diciembre de 2023). Proyecto para dotar de conectividad - Diagnóstico de conectividad para el proyecto. Obtenido de Instututo Federal de Telecomunicaciones México: https://centrodeestudios.ift.org.mx/admin/files/estudios/1705017510.pdf